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A sequential uncertainty domain inverse procedure for
estimating subsurface flow and transport parameters

K. C. Abbaspour,! M. T. van Genuchten,?> R. Schulin,' and E. Schldppi®

Abstract.

A parameter estimation procedure, sequential uncertainty domain parameter

fitting (SUFI), is presented and has the following characteristics. The procedure is
sequential in nature, meaning that one more iteration can always be made before choosing
the final estimates. The procedure has a Bayesian framework, indicating that the method
operates within uncertainty domains (prior, posterior) associated with each parameter.
The procedure is a fitting procedure, conditioning the unknown parameter estimates on an
array of observed values. Finally, the procedure is iterative, requiring a stopping rule
which is provided by a critical value of a goal function. Performance of the SUFI
parameter estimation procedure is demonstrated using three examples of increasing
complexity: (1) analysis of a solute breakthrough curve measured in the laboratory during
steady state water flow, (2) estimation of the unsaturated soil hydraulic parameters from a
transient drainage experiment carried out in a 6-m deep lysimeter, and (3) estimation of
selected flow and transport parameters from a hypothetical ring infiltrometer experiment.
The procedure was found to be general, stable, and always convergent.

Introduction

During the past several decades, considerable advances have
been made in the conceptual understanding and mathematical
description of water flow and solute transport processes in
variably saturated soils and groundwater systems. A large num-
ber of models of different degrees of complexity and dimen-
sionality are now available for predicting subsurface flow and
transport [e.g., National Research Council (NRC), 1990; Ségol,
1994]. Still, effective application of these models to practical
field situations suffers from two general problems. One issue
concerns the inability of models, however complex and sophis-
ticated numerically, to consider all of the important simulta-
neous physicochemical and hydrologic processes operative in
the subsurface, such as the presence of physical and chemical
nonequilibrium transport processes, preferential flow, various
boundary processes, and spatial and temporal variability in soil
hydraulic properties. The second issue is that even if a model
were to be developed that would account for all pertinent
processes, model users would still have difficulty collecting
enough meaningful field data to effectively run the model. The
past 30 years or so have probably seen more advances in
numerical modeling per se than in the methodology of field
data collection and how best to deal with parameter uncer-
tainty in predictive modeling.

Various schemes have been proposed to somehow deal with
the problem of uncertainty in model input parameters. The
problems of parameter estimation and uncertainty should be
addressed in a comprehensive manner using all available in-
formation. No experimental work is ever performed in a com-
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plete vacuum, and prior information is nearly always available
in some manner; such information must be used to advantage
by providing direction to further sampling. Nearly every project
involves the collection of data of different types and qualities;
these data should all be used to improve the understanding of the
problem. For example, most environmental problems are spatial
in nature, characterized by autocorrelated subsurface flow and
transport parameters; autocorrelation in parameters hence must
be revealed and taken advantage of. Moreover, measured values
of the primary outputs of hydrologic simulation models often
reveal the nature of the input fields and hence should also be
utilized. While the collection of new or additional data is gener-
ally the most direct way of reducing input uncertainty, limiting
factors such as cost, time, site destruction, and accuracy may not
always permit further sampling. Comprehensive algorithms are
needed to link the above seemingly different issues and consid-
erations. An algorithm developed by Abbaspour et al. [1996], the
Bayesian uncertainty development algorithm (BUDA), can uti-
lize all of the above techniques to achieve a higher reduction in
uncertainty in environmental projects. The inverse procedure in
this work is part of BUDA.

Of the different options mentioned above the use of mea-
sured primary outputs of hydrologic simulation models to es-
timate model input parameters has received special attention.
Much literature is devoted to this process alternatively referred
to as inverse modeling, model calibration, parameter fitting,
parameter estimation, and history matching. Reviews of the
subject are given by Yeh [1986] and Kool et al. [1987]. The
procedure generally involves minimization of the square dif-
ference function of some measured and simulated flow or
transport variable. Yeh and Yoon [1981] studied the parameter
identifiability of an aquifer with optimum dimension in param-
eterization. Cooley [1982, 1983] incorporated prior information
about the parameters into a nonlinear regression groundwater
flow model. Parker and van Genuchten [1984] applied an in-
verse technique to laboratory and field tracer experiments,
while Parker et al. [1985] used one-step laboratory outflow
experiments to estimate the unsaturated soil hydraulic param-
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Figure 1. Division of a distributed parameter into equally
sized strata for exhaustive stratified sampling. The dashed lines
locate the first moments of the strata.

eters. Carrera and Neuman [1986] employed a maximum like-
lihood method and incorporated prior information in their
aquifer parameter estimation procedure assuming transient
and steady state conditions. Van Dam et al. [1990] modified the
one-step outflow technique of Parker et al. [1985] into a mul-
tistep procedure for determining soil hydraulic functions. Ech-
ing and Hopmans [1993], similarly, studied optimization of the
hydraulic functions using both transient outflow and soil water
pressure head data. Dane and Hruska [1983], Kool et al. [1987],
and Sisson and van Genuchten [1991] determined soil hydraulic
properties from in situ water content data during vertical
drainage, whereas Kool and Parker [1988] applied an inverse
procedure to a flow process consisting of ponded infiltration
followed by gravity drainage with evaporation at the soil sur-
face. Some studies combined parameter estimation with hy-
draulic scaling capabilities [Shouse et al., 1992; Eching et al.,
1994], while others coupled numerical inverse problems such
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as heat or mass transport with unsaturated or saturated flow
[Carrera, 1987; Mishra and Parker, 1989; Sun and Yeh, 1990].
Yet others introduced geostatistics considerations in the pa-
rameter estimation process [Clifton and Neuman, 1982; Kitani-
dis and Vomvoris, 1983; Dagan, 1985; Hoeksema and Kitanidis,
1984; Kitanidis, 1995; Yeh et al., 1996].

A common problem with most of the inverse methods is
stability and convergence [Yeh, 1986], and more robust proce-
dures are desirable. The objective of this work is to describe
and demonstrate the use of a very different approach, sequen-
tial uncertainty domain parameter fitting (SUFI), for parame-
ter estimation. The procedure is general, forward, sequential,
iterative, and Bayesian in nature. The method begins with prior
uncertainty domains on the input parameters, usually invoking
relatively large uncertainties, and, subsequently, conditions the
model parameters on the measured data through an objective
or goal function. Ultimately, posterior uncertainty domains are
obtained with much reduced uncertainties. The stopping (con-
vergence) rule is dictated by a tolerance imposed on the goal
function. On the basis of our experience in working with SUFI
with different problems, three of which are discussed later in
this work, the proposed procedure was found to be stable,
always converging, and also well suited for global optimization.

Sequential Uncertainty Domain
Parameter Fitting

The first step in running SUFI is to identify the domain of
uncertainty for each parameter. This is achieved by invoking a
probabilistic description of the input data. Unfortunately, ex-
pressing data in probabilistic forms is not a common practice;
still, given the experimental difficulties in determining most
inputs, all parameters are subject to some uncertainty and
hence projects should benefit from probabilistic rather than
absolute statements regarding the input data. The form of the
probability function for a given parameter will depend on the
information available for that parameter. For example, in de-
picting hydraulic conductivity, knowledge of a lognormal dis-
tribution will speed up the process of convergence. In a worst-
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Figure 2. A schematic representation of uncertainty propagation in an exhaustive stratified sampling. The
250 possible values of the goal function are used to build a cumulative frequency distribution of the goal.
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Figure 3. Frequency distribution of the number of hits in each stratum. The strata with the largest number
of hits are most likely to contain the desired estimates.

case scenario the uncertain domain of a parameter can be
depicted as a finite interval, i.e., a uniform probability distri-
bution between physically realistic lower and upper bounds of
that parameter. In addition, nominal parameters can be con-
sidered in the analysis. For example, if the type of boundary
condition to be imposed is uncertain, a variable A can consist
of A = {constant head, constant flux}. Similarly, a variable H
could depict uncertainty in the type of chemical equilibrium or
nonequilibrium model to be adopted, i.e., H = {local equilib-
rium, first-order kinetics, two-site sorption kinetics}.

During the second step, uncertainty in each parameter must
be propagated through a simulation model to a goal function.
Some of the commonly used goal functions in parameter esti-
mation procedures are of the form

Absolute error

N
9= E |xm xx|i (1)
i=1
Root-mean-square error (RMSE)
1 N
9=y 2 (n—x)} ©)
i=1
Logarithmic form of RMSE (LRMSE)
1 N
9=1\n > (log x,, — log x,)? (3)

i=1

where x,,, is a measured value, x, is a simulated value, and N is
the number of measurements. We emphasize here that differ-
ent goal functions can lead to quite different values for the
estimated parameters. While a suitable goal function must
always be formulated, its form may depend also on the objec-
tives of the problem being investigated. The potentially very
important effects of different goal functions on the results have

not yet been given due attention in the literature. This issue is
further discussed at the end of this paper.

If measured values (x,,i = 1, --+, N) contain error, then
we treat each measured point as a random variable and obtain
the Bayesian distribution [Benjamin and Cornell, 1970] of the
goal function as

f’a(g)=f-~ff(,~<gbc;,,--~,x¢x)f<x}n>---f<xz>dx;~-dxﬁ,
1 N
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Figure 4. Comparison of measured (circles) effluent and
simulated (solid line) concentrations using parameters ob-
tained by both van Genuchten and Wierenga [1986] and the
sequential uncertainty domain parameter fitting (SUFI) esti-
mation approach.
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Table 1. Parameters of Chromium Column Displacement
Experiment in Example 1

Values Obtained by

van Genuchten and Values Obtained

Parameters Wierenga [1986] by SUFT*
Peclet number P 19.65 19.66F
Retardation factor R 1.349 1.348%
Value of goal function 0.01406 0.01398

expressed as (2)

*SUFI is defined as the sequential uncertainty domain parameter
fitting.

1The range of uncertainty is (19.659-19.665).

+The range of uncertainty is (1.34766-1.34772).

SUFI employs a Latin hypercube procedure [McKay, 1979] to
obtain a solution of (4).

To propagate uncertainty in the parameters, SUFI can in-
voke either an exhaustive stratified sampling scheme or a ran-
dom stratified sampling scheme. The stratified sampling pro-
cedure is based on a division of the cumulative probability
scale range into equal probability strata for each uncertain
input parameter. The first moment of each stratum on the
parameter scale range is taken to represent that stratum. The
procedure is illustrated in Figure 1 for a lognormally distrib-
uted parameter such as the saturated hydraulic conductivity.
For parameters having uniform probability distributions the
interval depicting the range of the parameter is simply divided
into equal strata and the midpoint of each stratum is chosen to
represent that stratum. Categorical or nominal parameters are
already discretized and need no further treatment. In the ex-
haustive stratified sampling a hydrologic simulation program is
subsequently run for all possible combinations of strata for all
input parameters, and for each run the goal function is calcu-
lated (Figure 2). For the case of the random stratified sam-
pling, only a random subset of the exhaustive case is used for
simulation. This exercise allows uncertainties in the input pa-
rameters to be propagated to the goal function. The choice of
the exhaustive stratified sampling or the random stratified sam-
pling depends on the number of parameters and the speed of
the simulation program. If there are too many parameters or
the simulation program is too slow, then the random stratified
sampling should be invoked.

Each parameter stratum in the SUFI analysis carries a score
which is initially set to zero. After each simulation the goal
function is calculated, and if it meets a certain tolerance cri-

Table 2. Progression to Convergence for Example 1
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terion (e.g., when g < 0.2), a hit is obtained and a positive
point is added to the score of each of the strata of that run. For
the case where the goal function possesses a distribution as the
result of measurement errors, if the tolerance is greater than
the lower limit on the 95% confidence interval of the goal, then
we obtain a hit. When all runs are completed, a frequency
distribution of hits is constructed for each stratum as illustrated
in Figure 3, where the numbers on the horizontal axes indicate
the range of the parameters and the numbers on each column
refer to the number of hits. Next, strata having zero or a small
number of hits at both ends of each interval are eliminated,
thus providing an updated uncertainty domain for the next
iteration. If the initial estimate of the uncertainty range for a
parameter was too small and the actual value was to the right of
the interval, then all hits would fall on the rightmost stratum as
shown in Figure 3 for the porosity. For the next iteration there-
fore we would select the interval to be [0.28, 0.32], for example.
With each iteration the uncertainty domain for each parameter
should get smaller, while the goal function will also decrease.

Choosing the number of strata for each parameter should be
problem dependent. While having more strata may promote
faster convergence because of possibly fewer iterations, too
many strata could result in an unacceptable number of simu-
lations for each iteration, especially when the simulation model
runs slowly and many parameters are to be estimated. For
example, if 10 parameters are present and each parameter
range is divided into 3 strata, then the total number of simu-
lations required would be 59,049 for the exhaustive stratified
sampling case. For this scenario, as mentioned above, SUFI
allows random stratified sampling which selects randomly a
subset of simulations to be performed. For example, if we limit
the number of simulations to 1% of the above exhaustive case,
then each of the 59,049 simulations would be performed with
a probability of 1%. This would reduce the number if simula-
tions to about 590. Another option in SUFI for obtaining a
faster result is to run the program in parallel. For example, if
we would like to perform 4000 runs in an iteration, we could
submit simultaneously 10 jobs of 400 runs each.

Test Cases and Parameter Estimation Results

The performance of the sequential uncertainty domain param-
eter fitting (SUFI) procedure is illustrated below by means of
three examples of increasing complexity: (1) analysis of a solute
breakthrough curve measured in the laboratory during steady
state water flow, (2) estimation of unsaturated soil hydraulic pa-

Number Parameter Value
of Number of
Iterations Parameters Minimum Maximum Strata Number of Hits in Each Stratum Tolerance
1 P 5.0 50.0 10 0,1,2,3,2,1,1,1,0,0 0.06
R 1.0 2.0 10 0,0,2,7,2,0,0,0,0,0
2 P 9.5 41.0 10 0,0,2,2,0,0,0,0,0,0 0.02
R 1.2 1.5 10 0,0,0,0,2,2,0,0,0,0
3 P 15.8 22.1 10 0,0,0,0,0,2,2,0,0,0 0.0144
R 1.32 1.38 10 0,0,0,0,2,2,0,0,0,0
4 P 18.32 20.21 20 10 ,4,6,7,7,6,6,5,3,0,0 0.0141
R 1.338 1.356 20 8x%0,57,8,876,3,0,0,0,0,0
5 P 19.265 20.021 20 7x%x0,1,2,1,10 X 0 0.0140
R 1.3452 1.3515 20 9x%x0,2,0,28X%X0
6 P 19.492 19.73 40 28 X 0,1,11 X 0 0.01398
R 1.347 1.3492 40 12 X0,1,27 X0
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Table 3. Distribution of the Number of Hits for Iteration 1 in Table 2 as a Function of Tolerance
Number Parameter Value
of Number
Iterations Parameters Minimum Maximum of Strata Number of Hits in Each Stratum Tolerance
1 P 5.0 50.0 10 2,3,33,3,3,3,3,3,2 0.10
R 1.0 2.0 10 0,09 10,9,0,0,0,0,0
P 5.0 50.0 10 0,333,3,3,2,2,2,1 0.08
R 1.0 2.0 10 0,0,89,5,0,0,0,0,0
P 5.0 50.0 10 0,1,23,2,1,1,1,0,0 0.06
R 1.0 2.0 10 0,0,2,7,2,0,0,0,0,0
P 5.0 50.0 10 0,0,1,1,1,1,0,0,0,0 0.04
R 1.0 2.0 10 0,0,0,4,0,0,0,0,0,0
P 5.0 50.0 10 0,0,0,1,0,0,0,0,0,0 0.02
R 1.0 2.0 10 0,0,0,1,0,0,0,0,0,0
P 5.0 50.0 10 0,0,0,0,0,0,0,0,0,0 <0.02
R 1.0 2.0 10 0,0,0,0,0,0,0,0,0,0
rameters from a transient drainage experiment carried out using \/73
a large 6-m deep lysimeter, and (3) estimation of selected flow c.(T) = 7 erfc [2 RT (R - T)]
and transport parameters from a hypothetical ring infiltrometer v
experiment. We also used example 1 to show the effect of a 50% 1 \/17
error in measured data, and we performed example 3 with both + 5 e’ erfc (R+T) )
. . . 2 2\RT
exhaustive and random stratified sampling schemes.
Example 1: Analysis of Observed Solute Breakthrough T'=w/L (10)
Curve P =L/D (11)

The first example deals with a column experiment treated
previously by van Genuchten and Wierenga [1986]. In this ex-
periment, transport of chromium was studied through a 5-cm
long column of sand. Figure 4 shows the observed effluent
curve. The governing transport model for this example is the
one-dimensional convection dispersion equation

aC 9°C aC

ot - Do T vy ®)

subject to the initial and boundary conditions

Cx,0)=0 (6)

aC
( —-D E + ‘UC) |x:0 = UCO (7)
(8C/ax) (s, 1) = 0 (8)

where C is the volume-averaged concentration, R is the retar-
dation factor accounting for linear sorption, D is the dispersion
coefficient, x is the distance, ¢ is the time, v is the pore water
velocity, and Cy, is the inlet concentration. The analytical so-
lution of this transport problem for the flux-averaged relative
effluent concentration c, at the end of the column x = L is
given by

where T is dimensionless time (pore volume) and P is the
column Peclet number. Measured c¢,(7) data are plotted in
Figure 4.

Several methods for estimating the unknown parameters P
and R in (9), i.e., trial and error, analysis of the slope of the
effluent curve, analysis of a lognormal plot of the data, and
using a nonlinear least squares analysis based on Marquardt’s
[1963] maximum neighborhood method, are discussed by van
Genuchten and Wierenga [1986]. Of these four methods the
least squares approach was shown to be the most accurate and
objective method. The least squares approach minimized the
following goal function

N

g= E (c,—¢)? (12)

i=1

where ¢, is the calculated concentration from (9), ¢ is the
observed effluent concentration, and N is the number of ob-
served data points. The residual sum of squares, g, was mini-
mized using the least squares program of van Genuchten
[1980], leading to the values for P and R listed in Table 1. The
results obtained with SUFI are also listed in Table 1 and shown
in Figure 4 as the solid curve which is the same as the curve

Table 4. Progression to Convergence for Example 1 for the Case With Measurement Errors

Parameter Value

Number of Number of
Iterations Parameters Minimum Maximum Strata Number of Hits in Each Stratum Tolerance
1 P 5.0 50.0 10 3,2,31,1,0,0,0,0,0 0.215
R 1.0 2.0 10 0,0,0,0,1,5,3,1,0,0
2 P 5.0 275 10 1,3,3,3,3,3000,0 0.208
R 1.3 1.7 10 1,0,3,4,4,3,1,0,0,0
3 P 5.0 20.75 10 1,1,3,5,5,6,3,3,2, 1 0.208
R 1.3 1.58 10 1,0,0,3,5,5,4,5,4,3
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Table 5. Soil Hydraulic Parameters of Crushed Bandelier Tuff Used in the Caisson Drainage Experiments (Example 2)

Values Obtained by van Genuchten et al.

[1987] Values Obtained by SUFI

Hydraulic

Parameters Method 1 Method 2 Scenario 1 Scenario 2 Scenario 3
0, 0.0* 0.0255 0.0* 0.0* 0.043083
0, 0.331* 0.3320 0.331* 0.331* 0.36975
a, cm ™! 0.01433 0.01545 0.005025 0.011915 0.00595
n 1.506 1.474 1.79 1.579 1.8675
K,, cmd! 25.0 33.71 9.85 12.45 28.167
/ 0.5% 0.4946 0.5* 0.5% 0.5%
Value of goal 0.011623 0.015655 0.0096 0.004945 0.007238

function (equation (16)) (equation (2)) (equation (2)) (equation (16)) (equation (2))

Parameters were estimated using method 1, estimating three parameters using water content 6 and pressure heads #; method 2, estimating
six parameters using 6 and /; scenario 1, estimating three parameters using 6 only; scenario 2, estimating three parameters using 6 and /; and

scenario 3, estimating five parameters using 6 only.
*Parameter values assumed to be known.

obtained by van Genuchten and Wierenga [1986]. The value of
the goal function based on the RMSE formulation (equation
(2)) using estimated parameters obtained by SUFI was essen-
tially the same as that obtained using the least squares ap-
proach of van Genuchten and Wierenga [1986].

Table 2 shows the progression of SUFI to convergence using
as initial parameter estimates uniform distributions in the in-
tervals P = [5.0, 50.0] and R = [1.0, 2.0]. The minimum
and maximum parameter values in Table 2 depict the lower
and upper limits of the parameter uncertainty domains; notice
that these intervals become smaller and smaller as the iterative
search proceeds. As mentioned earlier, no exact rules exist for
choosing the number of strata. A large number of strata are
possible in this example because of the small number of pa-
rameters and the simple analytical model involved (equation
9).

We emphasize that the value of the goal function during
each iteration can be adjusted by a tolerance, g < tolerance,
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Figure 5. A comparison of measured water contents (data
points) with simulated values using parameters obtained with
the three-parameter method 1 approach of van Genuchten et
al. [1987] (dashed line) and the three-parameter (6 only) SUFI
scenario 1 approach (solid line).

allowing us to choose prior uncertainty domains for the next
iteration. Table 3 demonstrates this point for iteration 1 in
Table 2 and for different tolerance levels. As the magnitude of
the tolerance is decreased, the number of hits decreases until
there are no hits in any of the strata for each parameter. Our
experience indicates that it is better to be relatively conserva-
tive. For example, in the present case it is better to use for the
second iteration the domain having a tolerance of 0.06 rather
than domains having tolerances of 0.04 or 0.02. Having a
higher tolerance will avoid the possibility of falling into local
minima as the iterative process continues. The data in Table 3
also reveal that for the given uncertinty domains, the goal
function is far more sensitive to the retardation factor R than to
the Peclet number P since the strata for R are much better dis-
criminated (leading to narrower intervals with hits) than for P.
In a second run we assumed that each measured datum
could be in error by 50%. In other words, the actual value of

0.00

1.00 H

Depth (m)

3.00
* 1
X 4
* 20
* 100 days
4.00 T T T T
0.10 0.15 0.20 0.25 0.30 0.35

Volumetric Water Content, 4

Figure 6. A comparison of measured water contents (data
points) with simulated values using parameters obtained with
the three-parameter method 1 approach of van Genuchten et
al. [1987] (dashed line) and the three-parameter (6 and /& data)
SUFI scenario 2 approach (solid line).
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Figure 7. A comparison of measured water contents (data
points) with simulated values using parameters estimated with
the six-parameter method 2 approach of van Genuchten et al.
[1987] (dashed line) and the five-parameter (6 only) SUFI
scenario 3 approach (solid line).

each x/, was uniformly distributed in the interval [0.5x’,,
1.5x% ], where i = 1, -+, N. The results of this example are
shown in Table 4. We notice the larger values of the tolerances
as compared with the previous case and the inability to reduce
the tolerance after the third run. In general, measurement
errors have the effect of producing more hits, and this limits
the resolution with which we can choose the posterior interval.
The overall effect of the measurement errors, based on our
definition of a hit, is to give a larger uncertainty interval for
each parameter. Given the 50% error in the measurements, we
cannot get more precise values for the parameters than the
intervals (5.0, 20.75) for P and (1.3, 1.58) for R. This consti-
tutes the uncertainty in these parameters after fitting. Com-
pare these values with (19.659, 19.665) for P and (1.34766,
1.34772) for R obtained in the case without measurement
errors.
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Example 2: Estimating the Unsaturated
Soil Hydraulic Properties

The second example involves transient drainage of water
from a large caisson 6 m deep and 3 m in diameter. The
experimental study was conducted by Abeele [1984] at Los
Alamos National Laboratory for the purpose of measuring the
unsaturated soil hydraulic properties of Bandelier Tuff in con-
nection with studies of radionuclide migration from waste dis-
posal facilities. The initially dry tuff in the caisson, instru-
mented with tensiometers and neutron probe access tubes, was
first saturated with water and then allowed to drain under
gravity for 100 days. The experimental data were previously
analyzed by van Genuchten et al. [1987] and Kool et al. [1987]
using nonlinear least squares optimization methods based on
the Levenberg-Marquardt method [Marquardt, 1963]. The data
were used to estimate the hydraulic parameters in the follow-
ing model for the unsaturated soil hydraulic parameters [van
Genuchten, 1980]:

=0, + 0~ 6
~ Ot T fany”

K=KSI[1 - (1~ 8P

0 (13)

(14)

where 0 is volumetric water content, 6, is residual water con-
tent, 6, is saturated water content, 4 is pressure head, a and n
are shape factors, m = 1 — 1/n, K| is saturated hydraulic
conductivity, / is a pore connectivity parameter, and S, is
effective fluid saturation:

r

0
S.(0) =

0,— 6, (15)

The drainage data were analyzed by van Genuchten et al.
[1987] and Kool et al. [1987] using two different methods with
different goal functions and input data. In the first method
(method 1) three parameters, «, n, and K, were estimated
using the following goal function

g(B) = > D [6%— 6,B)+ W* X [h}— h(B)]* (16)

j=1

where 67, represents measured water contents at M = 5
depths and P = 6 different times, / } is the measured pressure
head atx = 0.4 m, 6,;(B) and /;(B) are model-predicted 6 and

Table 6. Progression to Convergence for Example 2, Scenario 2

Number Parameter Value
of Number of
Iterations Parameters Minimum Maximum Strata Number of Hits in Each Stratum Tolerance
1 a,cm! 0.005 0.05 10 0,1,1,2,0,0,0,0,0,0 0.01
n 1.0 2.0 10 0,0,0,2,1,1,0,0,0,0
K,, cm d™! 1.0 100.0 10 0,1,1,0,1,1,0,0,0,0
2 a, cm™! 0.0095 0.023 10 0,3,4,4,2,1,0,0,0,0 0.007
n 1.3 1.6 10 0,0,0,1,1,2,2,3,2,2
K, cmd™! 10.9 60.4 10 6,4,2,1,0,0,0,0,0,0
3 a,cm! 0.0108 0.0176 10 1,6,5,3,1,0,0,0,0,0 0.0054
n 1.39 1.6 10 0,0,0,0,1,1,4,4,3,3
K,, cm d™! 10.9 30.7 20 2,3,4,2,2,2,0,1,12 X0
4 a, cm™! 0.0108 0.0142 10 0,0,1,1,0,0,0,0,0,0 0.005
n 1.474 1.6 10 0,0,0,0,0,0,0,1,1,0
K, cmd™! 10.9 18.8 30 0,0,0,0,1,0,1,23 X0
5 a,cm ! 0.0112 0.0125 10 0,0,0,0,0,1,0,0,0,0 0.004945
n 1.54 1.6 10 0,0,0,0,0,0,1,0,0,0
K, cmd? 112 142 30 12%0,1,17 X 0
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Table 7. Progression to Convergence for Example 2, Scenario 3

Number Parameter Value
of Number of
Iterations Parameters Minimum Maximum Strata Number of Hits in Each Stratum Tolerance

1 0, 0.001 0.1 4 1,1,2,1 0.0085
0, 0.3 0.4 4 0,0,3,2
a, cm”! 0.005 0.05 6 3,1,1,0,0,0
n 1.0 2.0 6 0,0,0,2,2,1
K, cmd™! 1.0 100.0 6 0,1,2,1,1,0

2 0, 0.001 0.1 4 3,2,1,0 0.008
0, 0.36 0.4 4 1,2,3,0
a, cm™! 0.005 0.0275 6 5,1,0,0,0,0
n 1.4 2.0 6 0,1,2,0,2,1
K, cmd! 18.0 83.0 6 0,3,2,0,1,0

5 0, 0.0092 0.0505 6 0,0,0,0,4,4 0.00729
0, 0.3675 0.375 4 0,4,4,0
a, cm”! 0.00542 0.00625 4 0,1,4,3
n 1.75 1.9 6 0,0,0,1,4,3
K, cmd™! 28.0 34.0 6 4,3,1,0,0,0

6 0, 0.0367 0.0505 6 0,1,0,2,1,0 0.007258
0, 0.369 0.373 4 1,2,1,0
a, cm™! 0.0056 0.00625 4 0,1,3,0
n 1.82 1.9 6 0,0,0,2,2,0
K, cmd! 28.0 34.0 6 4,0,0,0,0,0

7 0, 0.039 0.046 6 0,0,0,1,0,0 0.007238
0, 0.369 0.371 4 0,1,0,0
a, cm”! 0.0057 0.0061 4 0,0,1,0
n 1.86 1.89 6 0,1,0,0,0,0
K, cmd™! 28.0 30.0 6 1,0,0,0,0,0

«

h values corresponding to parameter vector B = («, n, K,),
and W = 0.0016 is a weighting coefficient chosen such that
the two terms of (16) attain roughly the same value [Kool et
al., 1987]. The estimation method involved an inverse solu-
tion of the one-dimensional unsaturated flow (Richards)
equation for an initially saturated soil profile, i.e., #(x) = 0,
subject to a no flow boundary condition at x = 0 and a

first-type lower boundary condition atx = 4.23 m by linearly
extrapolating between observed pressure head data at that
depth.

In the second method (method 2), six parameters, B = {K|,
a, n, 0,, 0, 1}, were estimated directly from reported labo-
ratory and caisson 6 (/) and K(h) data [Abeele, 1979, 1984]
using the following goal function

E ~~~~~~~~~
% 200 \\ T 3-parameter (8 and h)
"gh ------------------------------------------------
T van Genuchten etal. . 0
o [1987] method 1
5
2 3504
0
& 3-parameter (O only)
5-pararameter (9 only)
-500 T T T T
0 20 40 60 80 100
Time, t (days)

Figure 8. A comparison of measured pressure heads (data points) with simulated values using parameters
estimated by method 1 of van Genuchten et al. [1987] (dashed line) and scenarios 1, 2, and 3 of SUFI (solid

lines).
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Figure 9. Hydraulic properties of Bandelier Tuff. (a) Water
retention 6 (/) and (b) hydraulic conductivity K(60) curves are
shown using different methods. Data points are measured val-
ues from Abeele [1984].

M N

g(B) = > [67— 6B)]*+ IV 2, {log (K¥) — log [K/(B)]}?
i=1 j=1 (17)

where 07 and 6,(B) are observed and predicted water contents
at M values of the pressure head, K7 and K;(B) are observed
and predicted conductivities at N values of &, and V' is a
weighting factor that makes the two terms of (17) of roughly
equal value. The results obtained by van Genuchten et al.
[1987] for the two runs are shown in Table 5.

We ran three different scenarios with SUFI. First, the goal
function (2) with observed water contents only was used to
perform a three-parameter («, 7, and K;) estimation. Second,
the goal function (16) was used with measured water contents
and pressure heads to again estimate «, n, and K. Third, a
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five-parameter (6,, 6, o, n, and K,) estimation was carried
out, again with goal function (2) and again using only water
contents as the conditioning data. The latter scenario was used
to examine the observation by Kool et al. [1987] that simulta-
neous estimation of three or more parameters required more
information than just water content data. The HYDRUS [Vo-
gel et al., 1996] code was used in each case to obtain simulated
water content and pressure head data. Initial and boundary
conditions were similar to those used by Kool et al. [1987].

Hydraulic parameters estimated by SUFI using the three
scenarios above are also listed in Table 5 and compared with
the results obtained by van Genuchten et al. [1987] (see also
Kool et al., 1987). Figures 5, 6, and 7 show the measured water
contents as a function of depth after 1, 4, 20, and 100 days for
scenarios 1, 2, and 3, respectively. For scenarios 1 and 2 the
curves based on the three-parameter (method 1) estimation
results obtained by van Genuchten et al. [1987] are also shown
for reference, while for scenario 3 (Figure 7) curves based on
the six-parameter method 2 estimation are shown. In all cases
the parameters estimated by SUFTI lead to a closer fit to the
data. Tables 6 and 7 show the progression of SUFI toward
convergence for scenarios 2 and 3, respectively. We note here
that the measured value of K as obtained by Abeele [1984] was
124cmd .

Two important observations can be made for this test case.
First, contrary to the observation of Kool et al. [1987] with
respect to their nonlinear least squares analysis, SUFI was
capable of a five-parameter inversion using only observed wa-
ter content values. Actually, SUFI was found to have no lim-
itation in this regard, and any number of parameters can be
fitted using any pertinent observed data. As previously men-
tioned, the only limitation of SUFI may be the total number of
simulations that need to be carried out as a function of the
stratification of the parameters and the speed of the simulation
code. Second, Figures 5, 6, and 7 seem to suggest that the best
fit was obtained with the five-parameter case (0 data only)
followed by the three-parameter case without # data, and fi-
nally the three-parameter case using both 6 and /& data. How-
ever, this conclusion is correct only if we consider water con-
tent as the output. The five-parameter estimation is highly
conditioned on the 30 observed water content data and pro-
vides the best fit because of more degrees of freedom in the
fitting process. This conditioning on only one variable, in this
case water content, may not necessarily provide better esti-
mates for other output variables such as pressure heads, drain-
age rates, or concentrations if measured. This point is further
illustrated in Figures 8, 9a, and 9b.

Figure 8 compares the observed pressure head data with
predicted values when the parameter sets of scenarios 1, 2, and
3, as well as those of method 1 of van Genuchten et al. [1987]
(Table 5), are used in the forward problem. Clearly, goal func-
tions which included observed pressure head values provided
the best estimates. The same is evident when the calculated
hydraulic properties (equations (13) and (14)) using SUFI-
derived parameters (scenarios 1, 2, and 3) are compared with
the measured hydraulic data (data points) and the method 2
curves [van Genuchten et al., 1987] fitted to those data (Figures
9a and 9b). The data points in Figures 9a and 9b are a com-
posite of data derived from the caisson drainage experiment
using a standard instantaneous profile (gravity drainage) anal-
ysis in the wet range (0 > 0.164) and independently measured
retention and conductivity data in the dry range (6 < 0.164)
obtained in the laboratory using small cores [Abeele, 1979,
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Figure 10. Schematic of the system considered in test example 3. Points indicate locations of the 14

concentration sampling points.

1984]. Notice that the simultaneous use of observed pressure
heads and water contents in the caisson (scenario 2) now pro-
vides a much better fit than when only water content data are
used (scenarios 1 and 3). These results indicate that in general,
it is best to somehow include data of different types in the goal
function for an all-purpose simulation. Such an approach re-
quires selection of proper coefficients, such as W in (17), for
the different data types used in the goal function. As discussed
in more detail later, this task is not a trivial one.

Example 3: Hypothetical Water and Solute Infiltration Test

The third example considered here is a hypothetical case
involving the radially symmetric three-dimensional infiltration
of water and a dissolved solute from a single-ring infiltrometer
into a variably saturated, layered soil profile (Figure 10). This
problem was previously used to mathematically verify part of
the SWMS_2D code version 1.12 [Simunek et al., 1994]. The
layered soil profile was assumed to be that of the Hupselse
Beek watershed in the Netherlands, consisting of a 40-cm thick
A horizon on top of a 300-cm B/C horizon. The hydraulic
parameters describing the observed mean-scaled hydraulic
functions and the assumed transport parameters of the two soil
layers [Cislerova, 1987; Hopmans and Stricker, 1989] are given
in Table 8. For our purposes these parameters are treated here
as true parameters.

Calculations were carried out for a period of 5 days using the
SWMS_2D code with the true parameters as listed in Table 8.
The soil profile was assumed to be initially free of any solute.
All sides of the flow region were considered to be impervious
except for a ponded region (2 = 0) inside the ring infiltro-
meter around the origin at the surface (Figure 10). Figure 11

presents calculated pressure head and concentration profiles at
two different times. Calculated concentrations after 2 days at
14 arbitrary locations (Figure 10) were chosen to represent the
measured values.

We assumed that six of the hydraulic and solute parameters
in Table 8 were unknown: the saturated hydraulic conductivi-
ties of the two soil layers (K,; and K,), the longitudinal and
transverse dispersivity coefficients (D, and D), the adsorp-
tion coefficient (k), and a first-order rate constant for solute
degradation in the liquid phase (u,,). The adsorption coeffi-
cient appears in the retardation factor R as follows

Table 8. Soil Hydraulic Parameters of the Hupselse Beek
Area Used in the Verification Example of the
SWMS_2D Code

True Values Used in

SWMS_2D Forward Values Obtained by

Hydraulic and Simulation SUFI
Transport
Parameters Layer 1 Layer 2 Layer 1 Layer 2
0, 0.399 0.339 0.399* 0.339*
0, 0.0001 0.0001 0.0001* 0.0001*
a, cm™! 0.0174 0.0139 0.0174* 0.0139*
n 1.3757 1.6024 1.3757* 1.6024*
K,, cmd! 0.0207 0.0315 0.0209 .031666
D;, cm 0.5 0.5 0.500025 0.500025
D, cm 0.1 0.1 0.101 0.101
k cm® g ! 0.1 0.1 0.1032 0.1032
My, min~! —3472E-5 —3472E-5 -3.625E-5 —3.625E-5

Read —3.472E-5 as —3.472 X 1075,
*Parameters assumed to be known.
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Figure 11. Simulated (left) pressure head profiles and (right)

concentration profiles at (top) + = 0.25 and (bottom) ¢ = 5
days for test example 3.

pPK
R=1+" (18)

where p is the soil bulk density. The dispersion, adsorption,
and degradation parameters were assumed to be the same for
the two soil layers. We subsequently used SUFI with (2) as the
goal function to estimate the 6 unknowns using the 14 “mea-
sured” concentration values as the conditioning information.
The initial parameter values used to start SUFI were as-
sumed to contain large uncertainties and were depicted with

Table 9. Progression to Convergence for Test Example 3
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uniform distributions within the following intervals: K, =
[0.001, 0.1], K, = [0.001, 0.1], D, = [0.15, 0.75], D~ = [0.01, 0.4],
k = [0.05, 0.5], and p,, = [-1.0 X 10~*, =1.0 X 10~ °].
The final estimates of these parameters as obtained with SUFI
using the exhaustive stratified sampling option are given in
Table 8. Table 9 shows the progression to convergence. The
predicted concentration distributions using the final estimates
were essentially identical to those shown in Figure 11.

Since the true parameters for this hypothetical example were
known, the simulation model should be able to fully explain the
measured concentrations; that is, we should be able to achieve
a value of zero for the goal function. Such a scenario is highly
unlikely in reality since measurements are always subject to
some error. Also, the selected simulation model with its limited
number of invoked processes and associated parameters will
hardly ever correctly describe the true physical processes op-
erating in the subsurface, thus leading to additional approxi-
mations or inaccuracies for the estimated parameters in that
simulation model. Numerical approximations in the simulation
model itself may also further limit the final accuracy of the
parameter estimation process. To obtain a goal function of
zero in this example, SUFI requires that the true values of the
six parameters all fall in the middle of an interval in their
respective strata. The data shown in Table 9 suggest that a goal
function of zero eventually would be obtained if the iterative
process were continued. Since having a goal function of zero is
not the objective, the iterative process was terminated after the
eighth iteration when the tolerance reached a very small value.

An interesting observation in Table 9 is that during the first
and second iterations, SUFI could not discriminate among the
different strata of D, and D, despite the relatively large un-
certainty domains used for these two parameters. This result
indicates that the goal function was insensitive to these param-
eters for the given level of uncertainty in the other parameters.
When the other parameters became more defined during the

Number Parameter Value
of Number of Number of Hits in
Iterations Parameters Minimum Maximum Strata Each Stratum Tolerance

1 D,, cm 0.15 0.75 2 2,2 0.04
D, cm 0.01 04 2 2,2
K, cm® g~! 0.05 0.5 2 4,0
Ky, d7 —1.0E-4 —1.0E-6 2 4,0
K, cmd ! 0.001 0.1 2 4,0
K,,, cmd! 0.001 0.1 2 4,0

3 D,, cm 0.25 0.65 4 0,0,1,0 0.005
D, cm 0.01 04 2 1,0
K, cm® g~! 0.05 0.16 3 0,1,0
Ky, d7 —1.0E-4 —1.0E-5 2 0,1
K,;, cmd™! 0.017 0.026 2 0,0,1,0,0,0
K,,, cmd! 0.025 0.05 2 1,0

4 D,, cm 0.45 0.55 3 1,1,0 0.003
D, cm 0.01 0.205 3 1,1,0
K, cm® g~! 0.087 0.123 4 1,1,0
Ky, d7 —5.5E-5 —1.0E-5 3 0,2,0
K,;, cmd™! 0.02 0.0215 3 1,1,0
K,,, cmd! 0.025 0.037 3 1,1,0

8 D,, cm 0.45 0.5167 2 0,1 0.0002
D, cm 0.01 0.14 5 0,0,0,1,0
K, cm® g~! 0.087 0.105 5 0,0,0,0,1
Ky, d7 —4.0E-5 —1.0E-5 4 1,0,0,0
K,;, cmd™! 0.02 0.021 5 0,0,0,0, 1
K,,, cmd! 0.025 0.033 3 0,0, 1

Read —1.0E-4 as —1.0 X 10,
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Table 10. Progression to Convergence for Test Example 3 Using Random Stratified Sampling Procedure
Number Parameter Value
of Number of
Iterations Parameters Minimum Maximum Strata Number of Hits in Each Stratum Tolerance
1 D,, cm 0.15 0.75 6 0,6,9,4,8,0 0.08
Dy, cm 0.01 0.4 6 50,3,8,0, 10
Kk, cm® g1 0.05 0.5 6 0,9,8,0,0,7
U, d! —1.0E-4 ~1.0E-6 6 4,4,0,8,0,8
K., cmd™! 0.001 0.1 6 4,21,12,0,0,0
K,,, cmd™! 0.001 0.1 6 3,56,9,30
3 D,, cm 0.32 0.65 6 9,0,6,0,0,5 0.012
Dy, cm 0.075 0.4 6 1,9,8,0,0,0
Kk, cm® g1 0.05 0.5 6 1,8,0,0,0,0
U, d! —1.0E-4 —1.0E-6 6 12,7,0,0,3,0
K., cmd™! 0.0175 0.045 6 1,8,0,0,0,0
K,,, cmd™! 0.0285 0.056 6 7,4,0,0,0,0
4 D,, cm 0.32 0.65 6 0,9,3,4,0,0 0.0078
Dy, cm 0.075 0.1833 6 4,7,0,0,0,0
Kk, cm® g1 0.05 0.2 6 4,0,0,11,0,0
U, d! —1.0E-4 —-1.17E-5 6 0,0,0,4, 11,4
K., cmd™! 0.0175 0.0267 6 4,0,0,13,0,0
K,,, cmd™! 0.0285 0.0376 6 0,3,7,3,0,3
10 D,, cm 0.498 0.515 6 2,2,2,1,2,5 0.0005
Dy, cm 0.0985 0.106 6 2,1,3,1,51
Kk, cm® g1 0.097 0.103 6 1,0,2,10,0,0
U, d! —3.5E-5 —32E-5 6 0,0,1,1,5,5
K., cmd™! 0.02054 0.0209 6 0,1,0,2,5,4
K,,, cmd™! 0.0313 0.0317 6 1,3,33,3,0

third iteration, D, and D started to exert more effect on the
goal function. This example hence shows that the sensitivity of
an objective function to a certain parameter may depend on
the invoked or calculated uncertainty domains of the other
parameters. The example also indicates that SUFI is a very
appropriate tool for carrying out sensitivity analyses. Most
traditional methods of carrying out sensitivity analyses invoke
systematic changes in a certain parameter of interest while
keeping all other parameters constant. Such an approach as-
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Figure 12. A comparison of measured effluent concentra-
tions (data points) with simulated values using parameters
estimated by SUFI assuming a logarithm-based root-mean-
square error (LRMSE) objective function and a regular root-
mean-square error (RMSE) objective function.

sumes exact (true) knowledge of the other parameters and
hence is not appropriate for cases where the true values of
parameters are not known. By contrast, SUFI provides a
method for situations where the parameters are treated with
uncertainty.

The results with the random stratified sampling which was
also performed for this example are shown in Table 10. In this
example we divided the uncertainty intervals of the parameters
into six strata. This produces an exhaustive sample space of
46,656 combinations. We allowed only 0.3% of the combina-
tions to be simulated, and this resulted in about 140 simula-
tions in each iteration. We stopped after the tenth iteration,
where a goal value of 0.0005 was obtained. The random strat-
ified sampling also worked well for this example, and on the
basis of our experience it is better to use this sampling scheme
when many parameters are involved.

Influence of the Goal Function

A detailed analysis of different goal functions is beyond the
scope of this paper. Still, we would like to show briefly the
potentially important implications of formulating and using
different goal functions. The implications are illustrated for the
first test example which we analyzed also using the logarithm-
based (LRMSE) goal function as given by (3). In this case we
obtained the results P = 57.16 and R = 1.153. Figure 12
shows that the LRMSE-fitted effluent curve differs substan-
tially from the previously obtained RMSE curve. The pro-
nounced differences between the two cases is caused by a scale
phenomenon. When the RMSE is used, the contributions of
relatively small concentrations to the value of the goal function
are essentially ignored. By comparison, LRMSE puts more
weight on the smaller concentrations at the expense of the
higher values.

Proper definition of the goal function can become even
more difficult, and somewhat subjective, when different types
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of data are represented in the goal function, such as was the
case with (16) for the caisson drainage example 2. When we
repeated the second scenario for this example using W rather
than W2 in (16), the estimates for the three unknowns became
quite different: @ = 0.0224 (cm™ '), n = 1.12576, and K, =
85.5 (cm d™!). Given that the measured K, was 12.4 cm d™*,
the parameter estimates using W should be relatively inaccu-
rate. Using W instead of W? in this case leads to a goal function
whose value is dominated by pressure heads solely because of
their numerically larger values; this occurs in spite of the fact
that in situ pressure head measurements often yield less accu-
rate data than water content measurements.

Conclusions

The acronym SUFI was coined to represent a parameter
estimation procedure which is sequential, operates within pa-
rameter uncertainty domains, employs only forward calcula-
tions, and is iterative in nature. The procedure is general,
stable, always convergent, and has no inherent limitations in
terms of the number of parameters that can be considered
simultaneously. The number of function calls can be limited by
invoking a less exhaustive sampling scheme, or the program
can be made to run faster by parallel submission of smaller
jobs. The sequential uncertainty domain parameter estimation
procedure performed well in three different examples involv-
ing a wide range of flow and transport parameters. The pro-
cedure begins with a prior and concludes with a posterior state
of belief of the value of the parameters being estimated. The
states of belief are expressed as uncertainty domains, with the
posterior uncertainty domain being much smaller than the
prior one. Although not discussed in great detail, the impor-
tance of the goal function on the results is demonstrated.
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